Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572663

ABSTRACT

BACKGROUND: There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. METHODS: Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. RESULTS: While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα-remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. CONCLUSIONS: Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.


Subject(s)
Antiviral Agents/pharmacology , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Cell Line , Drug Synergism , Humans , Lung/drug effects , Lung/metabolism , Lung/virology , Metabolome/drug effects , Organoids , RNA, Viral/biosynthesis , RNA, Viral/drug effects , Signal Transduction/drug effects , Transcriptome/drug effects , Virus Replication/drug effects , Viruses/classification , Viruses/drug effects
2.
Viruses ; 13(9)2021 09 04.
Article in English | MEDLINE | ID: covidwho-1478110

ABSTRACT

SARS-CoV-2 and its vaccine/immune-escaping variants continue to pose a serious threat to public health due to a paucity of effective, rapidly deployable, and widely available treatments. Here, we address these challenges by combining Pegasys (IFNα) and nafamostat to effectively suppress SARS-CoV-2 infection in cell culture and hamsters. Our results indicate that Serpin E1 is an important mediator of the antiviral activity of IFNα and that both Serpin E1 and nafamostat can target the same cellular factor TMPRSS2, which plays a critical role in viral replication. The low doses of the drugs in combination may have several clinical advantages, including fewer adverse events and improved patient outcome. Thus, our study may provide a proactive solution for the ongoing pandemic and potential future coronavirus outbreaks, which is still urgently required in many parts of the world.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzamidines/pharmacology , COVID-19/metabolism , COVID-19/virology , Guanidines/pharmacology , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Benzamidines/therapeutic use , Cricetinae , Disease Models, Animal , Drug Therapy, Combination , Female , Guanidines/therapeutic use , Host-Pathogen Interactions/drug effects , Humans , Interferon-alpha/therapeutic use , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL